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Abstract

FINLINE TAPERDESIGN MADE EASY

Adalbert Beyer and Ingo Wolff

University, Department of Electrical Engineering,

Bismarckstrasse 81, D-41OO Duisburg, FRG

In this paper a method is presented which permits

the quick and exact fabrication of tapers in fin-

line technique. This method uses tapers in the

form of circular area which are matched to the

slotwidth as a function of the characteristic im-

pedance. For the application of the described me-

thod the field distributions and the characteris-

tic

In

are

of

impedances of finlines must be known.

Introduction

finline technique optimized bent structures

used in many components and systems. Examples
such structures are tapers which match diffe-

rent geometrical and electrical parameters of two

waveguide sections or bent coupling sections

which realize the desired coupling ratios of two

slot structures.

For an easy fabrication of millimeter wave circu-

its a computer aided production of the layout

masks is needed. The complexity of the circuit

structures and especially the arbitrarily bent

contours of e.g. tapers on the one hand render
the fabrication difficult, on the other hand they

effect the accuracy of the desired layouts. In

the following a method is presented which allows

to fabricate the layouts faster and with a higher

degree of accuracy.

Circular Arc Finline Tapers

Some papers have presented calculation methods

for inhomogeneous finlines /1,4/. The optimiza-

tion of the inhomogeneous sections of finlines

yields arbitrary contour functions which for prac-

tical applications are approximated by polynomi-

als. Plotters and mask cutters normally can pro-

duce circular arcs quickly and with a high degree

of accuracy. For this reason the optimized tapers

instead of using polynomials are approximated by

means of circular arc sections in this paper.

Fig.1 shows the slotwidth s of a finline taper

(2) which is used to match a rectangular wavegui-

de (1) and a homogeneous finline (3). This taper

is approximated by means of two circular arcs
(Fig.2); its taper function is not only continu-

ous but it is also characterized by a taper func-

tion which is continuously differentiable in the
interconnection points PH and PF to the homogene-
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Fiq.1: Finline taper.
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Fiq.2: Geometry of a finline taper composed by
two circular arcs.

ous waveguides (1) and (3). From these conditions

of the taDer function it follows that at the

points PH, P,_, PF:

- the center MH of the circular

into the wavegulde section is

line 2=0,

the center M of the circular

into the fin~ine section is a
2.1

the intersection ooint of the

arc which issues

a point of the

arc which issues

point of the line

circular arcs

lies on the conne~ting line between MH and MF.

The Pythagorean theorem can be applied to the tri-
angle (MH,MF,PO) and the sum rF+rH can be determi-

ned to:

_ 12+(b/2-a)2

‘F+rH- 2(b/2-s) - (1)

The geometry of the taper (l,s,b) defines a quan-
tity of circle radii which permit to find an over-

all continuous and continuously differentiable
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taper function. Moreover (1) still contains a de-

gree of freedom which can be used with regard to

other than geometrical aspects. Two cases shall

be considered which a) use equal radii and b) un-

equal radii of the two circular arcs.

a) Equal radii:

= 12+(b/2-s)2~.~ =r (2)
F H 4(b/2–s) “

The solution given in (2) is the easiest and most
obvious one. In this case only one adjustment of

the radii is needed so that the structural func-

tion can be produced with a high degree of accura-

cy (only the intersection point P~ is critical in

this context).

Fig.3 shows the qualitative dependence of the

slot widths s(z) and of the characteristic impe-

dances ZL(Z) for the cases a) and b). The

(1

o iz

Fiq.3: Plot of the functions ZL(Z) and s(z)

a) for identical radii r ❑ r
H F’

b) for different radii rH#rF.

field theoretical background for the determinat-

ion of these quantities is described in /1/.

b) Unequal radii:

The structural function according to a) implies

that

~(~=1/2) . * ,
(3)

i.e. at 2.1/2 the slotwidth s is the mean value

between the height of the waveguide and the slot

width of the homogeneous finline. It clearly can

be seen that the structural function s(z) in case

a) and ZL(Z) in case b) have more smooth taper

functions. However, the reflection properties of
the tapers are largely determined by the dependen-

ce ZL(Z). Consequently, it is more reasonable to
match the depkndences of the characteristic impe-

dances at 2.1/2:

z +Z
zL(z=l/2) . + . z

M

and to require:

(4)

s(z=l/2) = S(ZM), (5)

where S(ZM) is the slotwidth which is adjoint to

the impedance ZM.

The slotwidth at 2=1/2 (half taper length) must

be determined so that it is the algebraic mean

value of the characteristic impedances Z and Z
at the ends of the taper (i.e. at z=OL~nd z=l)~
The function ZL(Z) is known from a taper analysis

program, e.g. /1/. Equ.(4) then directly can be
determined from Z (z) and (5) from its inverse

function. Thus ‘from the pairs ofcircular arcs

which fit (1) that pair which fulfills the con-

dition (5) can be found.

- Geometry of the matched radii of a circu-
lar arc taper.

If As is the extension of the slot width s at

z.1/2 compared to the slotwidth of the homoge-

neous finline, in the case a) of equal radii this

value is: AS.6/2. For all practical applications

of the structural function which is defined by
the characteristic impedance up to now only cases

with As<3/2 have been found. Then it follows from
Fig.4 that r +r

arou;~e ~gd;~~h !;e ~;~;u~~a’i~lSs~~~c~~ ~rPo~~~

‘M: ‘F can be ‘calculated from the
triangle (MF, pM, pO):

_ (1/2)2+As2
‘F – 2As (6)

If (considering Fig.4) the case AS+O is regar-

ded, it becomes clear that below a lower bound of

As no pair of circles can be found, because for
such values of As negative radii r result. From
(6) it follows that in the lim!!ting case rH+ o
the condition

12+62
—_n, r->0

40 ~

results for the existence

tion. If (7) is inserted
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respect to As, the following condition for AS

must be fulfilled:

As > +{1+(1/N2(l(;)~l+(6/1)2+(6/1) 4)} . (8)

In the case of rH+O the negative sign of the

root has to be used. The positive sign of the

root holds for analogous considerations in the

case r +0. For a K-band finline mount the

followi~g geometrical dimensions are used:

b/2.2.159 mm, s=lOO. ..2OOum and 1>15 mm or

l/!S>7. Under the condition 1/6 >>1 the fourth

power of 6/1 is neglected and because

KS 1+0.5X, IX]<<1,

he following condition results from 8):

As>:.

9)

10)

}or all substrate materials for which the charac-

teristic impedance fulfills the following condi-

tions:

Za+z
LF

ZL(S+:) < —
2

< ZL(S+;)
(11)

(with ZLF the characteristic impedance of the

homogeneous finline and Za the characteristic

impedance of the waveguide) a matched circular

arc taper can be found using equs. (6) and (7).

A similar condition can be found for the slot-

width s(z):

6
s + y < s(z=l/2) < s + -$. - (12)

All tapers discussed in this paper meet these con-

ditions.

Metallization

(Thickness = 17.5 pm)
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Geometry of a two-taper section. Material:

RT/Duroid 5880, height 125 urn, cr=2.22.

Experimental Verification

In order to examine the efficiency of this method

a double circular arc taper designed for the

K-band (18 GHz - 26.5 GHz) is compared to a li-

near and a polynomial taper. The structure of

each taper corresponds to that shown in Fig.5,

which also specifies the common geometrical dimerl-

sions and electrical parameters. Fig.6a) shows

the return loss of the linear two-taper section.
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Return loss of two-taper sections versus

the frequency at K-band:
a) for a linear taper,

b) for a near optimum taper,

c) for a circular arc taper.
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This figure shows four minima Ml, M2, M3 and M ;

two of them are in the order of –40 dB and tke

other two only nearly -20 dB. The four minima

result from reflexions at the beginnings and the

ends of the tapera. The frequency spacing between

the minima is inversely proportional to the

geometrical spacing between these reflecting

planes (consider: The phase constant 13 varies
along the taper). In the case shown in Fig.6a)

the frequency spacings between the minima are

relatively small because the geometrical spacing

1 is large. From the figure it can be concluded
t~at the reflexion at the taper input where the

empty waveguide changes into the the finline

section is large ( -20 dB) compared to the
reflexion at the end of the taper and the be-

ginning of the homogeneous finline.

Fig.6b) shows the return loss of an optimized

two-taper section with a polynomial slot func-

tion. The bent contour sections have been produ-

ced using a plotter and thus they surely do not

exhibit the desired smooth curve. In the case of

this taper Mland M2, indicate the reflection mini-

ma. A comparison with the preceding structure
shows that the frequency spacing between the mini-

ma is more than three times larger as in the case
of the linear taper (Fig.6a)) because the geome-

trical spacing between the reflecting planes is

about one third compared to that of the linear

taper.

It should be mentioned that the tolerances for

producing the slot at the taper end, where the ta-

per changes into the homogeneous finline, are

much more critical than at the interconnection

between the empty waveguide and the taper, becau-

se at the end of the taper the slotwidth is 15
times smaller than the waveguide height.

The best results for the return loss have been

measured for the circular arc two-section taper

(Fig.6c)). NO dominant reflection can be obser-
ved in this case. The minimum return loss is im–

proved by -8 dB; the mean value of the return

loss is even -14 dB lower in the case of the

circlar arc taper compared to the other tapers.

Conclusions

From the results presented in this paper it can

be concluded that in a practical finline taper

design it is much more efficient to realize a

smooth taper function than to put high effort

into a numerical optimization of other structural

functions. This conclusion is made under the as-

sumption that the layout maaks of the tapers are

produced with a plotter of low accuracy as it
often is done in the laboratory. The results pre-
sented here do not mean that the theoretically

optimized taper functions could not deliver even
better properties if they can be produced with a

very high accuracy. So the arguments given in

this paper could be a little bit debilibitated if

a high accuracy mask cutter is used, In any case
the production of the circular arc tapers is much

simpler than that of the other tapers.
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