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Abstract

In this paper a method is presented which permits
the quick and exact fabrication of tapers in fin-
line technique. This method uses tapers in the
form of circular arcs which are matched to the
slotwidth as a function of the characteristic im-
pedance. For the application of the described me-
thod the field distributions and the characteris-
tic impedances of finlines must be known.

Introduction

In finline technique optimized bent structures
are used in many components and systems. Examples
of such structures are tapers which match diffe-
rent geometrical and electrical parameters of two
waveguide sections or bent coupling sections
which realize the desired coupling ratios of two
slot structures.

For an easy fabrication of millimeter wave circu-
its a computer aided production of the layout
masks 1is needed. The complexity of the circuit
structures and especially the arbitrarily bent
contours of e.g. tapers on the one hand render
the fabrication difficult, on the other hand they
effect the accuracy of the desired layouts. In
the following a method is presented which allows
to fabricate the layouts faster and with a higher
degree of accuracy.

Circular Arc Finline Tapers

Some papers have presented calculation methods
for inhomogeneous finlines /1,4/. The optimiza-
tion of the inhomogeneous sections of finlines

yields arbitrary contour functions which for prac-
tical applications are approximated by polynomi-
als. Plotters and mask cutters normally can pro-
duce circular arcs quickly and with a high degree
of accuracy. For this reason the optimized tapers
instead of using polynomials are approximated by
means of circular arc sections in this paper.

Fig.l shows the slotwidth s of a finline taper
(2) which is used to match a rectangular wavegui-
de (1) and a homogeneous finline (3). This taper
is approximated by means of two circular arcs
(Fig.2); its taper function is not only continu-
ous but it is also characterized by a taper func-
tion which is continuously differentiable in the
interconnection points PH and PF to the homogene-
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Fig.2: Geometry of a finline taper composed by
two circular arcs.

ous waveguides (1) and (3). From these conditions
of the taper function it follows that at the
points PH’ PS’ PF:

- the center M, of the circular arc which issues
into the waveguide section is a point of the
line z=0,

-~ the center M_ of the circular arc which issues
into the FinEine section is a point of the line
z=1

- the intersection point of the circular arcs
lies on the connecting line between MH and MF'

The Pythagorean thecorem can be applied to the tri-

angle (MH,MF,PU) and the sum Tp+Ty can be determi-
ned to:
2 2
_ 17+ (b/2-5)
p Y Ty T T2/3o8) (1)

The geometry of the taper (1,s,b) defines a quan-
tity of circle radii which permit to find an over-
all continuous and continuously differentiable
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taper function. Moreover (1) still contains a de-
gree of freedom which can be used with regard to
other than geometrical aspects. Two cases shall
be considered which a) use equal radii and b) un-
equal radii of the two circular arcs.

a) Equal radiis

12+(b/2—s)2 (2)

TETR T YT am/2-s)

F H

The solution given in (2) is the easiest and most
obvious one. In this case only one adjustment of
the radii is needed so that the structural func-
tion can be produced with a high degree of accura-
cy (only the intersection point PS is critical in
this context).

Fig.3 shows the qualitative dependences of the
slot widths s(z) and of the characteristic impe-
dances ZL(z) for the cases a) and b). The
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Fig.3: Plot of the functions ZL(z) and s(z)
a) for identical radii F,,=r.,
b) for different radii errF.

field theoretical background for the determinat-
ion of these quantities is described in /1/.

b) Unequal radii:

The structural function according to a) implies
that

_ b/2+s

s(zsl/2) = =5= (3)

i.e. at zz1/2 the slotwidth s is the mean value
between the height of the waveguide and the slot
width of the homogeneous finline. It clearly can
be seen that the structural function s(z) in case
a) and Z (z) in case b) have more smooth taper
functions. However, the reflection properties of
the tapers are largely determined by the dependen-
- ce Z (z). Consequently, it is more reasonable to
match the dependences of the characteristic impe-
dances at z=1/2:

Z
ZL(z=l/2) = =g (4)

and to require:

s(z=1/2) = S(ZM), (5)

where s(Z,) is the slotwidth which is adjoint to
the impedance ZM.

The slotwidth at z=1/2 (half taper 1length) must
be determined so that it is the algebraic mean
value of the characteristic impedances Z, _ and Z
at the ends of the taper (i.e. at z=0"and z=1)2
The function ZL(z) is known from a taper analysis
program, e.g. /1/. Equ.(4) then directly can be
determined from Z (z) and (5) from its inverse
function. Thus from the pairs of circular arcs
which fit (1) that pair which fulfills the con-
dition (5) can be found.

Fig.4: Geometry of the matched radii of a circu-
lar arc taper.

If As is the extension of the slot width s at
z=1/2 compared to the slotwidth of the homoge-
neous finline, in the case a) of equal radii this
value is: As=§/2. For all practical applications
of the structural function which is defined by
the characteristic impedance up to now only cases
with As<§/2 have been found. Then it follows from
Fig.4 that r_»r,, i.e. that the circular arc
around M. with the radius r. intersects the point
P,. The radius Tp  can be calculated from the
triangle (MF’ P> PD):

_ /2y s’

F 2As (6)

If (considering Fig.4) the case As+0 is regar-
ded, it becomes clear that below a lower bound of
4s no pair of circles can be found, because for
such values of As negative radii r,, result. From

(6) it follows that in the limiting case t,~ 0
cos H
the condition
12+<S2
25 T fp 7 0 (7)

results for the existence of the structural func-
tion. If (7) is inserted into (6) and solved with



respect to As, the condition for As

must be fullfilled:

As > %{“(1/5)2(1(;)‘/1+(<S/1)2+(6/1)4)} . (8)

In the case of &r,+»0 the negative sign of the
root has toc be used. The positive sign of the
root holds for analogous considerations in the
case r--+0. For a K-band finline mount the
following geometrical dimensions are used:
b/2=2.159 mm, s=100...200um and 1>15 mm or
1/86>7. Under the conditien 1/8 >>1 the fourth
power of §/1 is neglected and because

v+ x =

following

1+ 0.5%, |x|<«<1,

(9)
the following condition results from (8):

As > Ji

4 (10)

For all substrate materials for which the charac-
teristic impedance fulfills the following condi-
tions:

Z +7Z

[ a LF 8
2y (stg) < —3 L'S*3

(11)

(with 7 the characteristic
homogeneous finline and Z_ the characteristic
impedance of the waveguide)® a matched circular
arc taper can be found using equs. (6) and (7).

impedance of the

A similar condition be found for the slot-

width s(z):

can

S+%<S(Z=l/2)<s+—g-. (12)

All tapers discussed in this paper meet these con-
ditions.

Metallization
(Thickness = 17.5 um)
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Fig.5: Geometry of a two-taper section. Material:
RT/Duroid 5880, height 125 um, €.52.22.

Experimental Verification

In order to examine the efficiency of this method
a double circular arc taper designed for the
K-band (18 GHz - 26.5 GHz) is compared to a li-

near and a polynomial taper. The structure of

each taper corresponds to that shown in Fig.5,

495

which also
sions and
the return

specifies the common geometrical dimen-
electrical parameters. Fig.6a) shows
loss of the linear two-taper section.
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Fig.6: Return loss of two-taper sections versus
the frequency at K-band:
a) for a linear taper,
b) for a near optimum taper,
c) for a circular arc taper.



This figure shows four minima Ml M2 M and M
two of them are 1in the ordel of "-40 dB and tﬁe
other two only nearly -20 dB. The four minima
result from reflexions at the beginnings and the
ends of the tapers. The frequency spacing between
the minima is inversely proportional to the
geometrical spacing between these reflecting
planes (consider: The phase constant 8 varies
along the taper). In the case shown in Fig.6a)
the frequency spacings between the minima are
relatively small because the geometrical spacing
is large. from the figure it can be concluded
t%at the reflexion at the taper input where the
empty waveguide changes into the the finline
section is large ( -20 dB) compared to the
reflexion at the end of the taper and the be-
ginning of the homogeneous finline.
Fig.6b) shows the return 1loss of an optimized
two-taper section with a polynomial slot func-
tion. The bent contour sections have been produ-
ced using a plotter and thus they surely do not
exhibit the desired smooth curve. In the case of
this taper M, and M, indicate the reflection mini-
ma. A comparTison With the preceding structure
shows that the frequency spacing between the mini-
ma is more than three times larger as in the case
of the linear taper (Fig.6a)) because the geome-
trical spacing between the reflecting planes is
about one third compared to that of the linear
taper.

It should be mentioned that the tolerances for
producing the slot at the taper end, where the ta-
per changes into the homogeneous finline, are
much more critical than at the interconnection
between the empty wavequide and the taper, becau-
se at the end of the taper the slotwidth is 15
times smaller than the wavequide height.

The best results for the return loss have been
measured for the circular arc two-section taper
(Fig.6c)). No dominant reflection can be obser-
ved in this case. The minimum return loss is im-
proved by -8 dB; the mean value of the return
loss is even =14 dB 1lower in the case of the

circlar arc taper compared to the other tapers.

496

Conclusions

From the results presented in this
be concluded that in

paper it can
a practical finline taper
design it is much more efficient to realize a
smooth taper function than to put high effort
into a numerical optimization of other structural
functions. This coneclusion is made under the as-
sumption that the layout masks of the tapers are
produced with a plotter of low accuracy as it
often is done in the laboratory. The results pre-
sented here do not mean that the thecretically
optimized taper functions could not deliver even
better properties if they can be produced with a
very high accuracy. So the arguments given in
this paper could be a little bit debilibitated if
a high accuracy mask cutter is used. In any case
the production of the circular arc tapers is much
simpler than that of the other tapers.
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